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ABSTRACT: 
 
 The vertex coloring problem has been the subject of extensive research for many 

years.  Driven by application potential as well as computational challenge, a variety of 

methods have been proposed for this difficult class of problems.  Recent successes in the 

use of the unconstrained quadratic programming (UQP) model as a unified framework for 

modeling and solving combinatorial optimization problems have motivated a new 

approach to the vertex coloring problem.  In this paper we present a UQP approach to this 

problem and illustrate its attractiveness with preliminary computational experience.  

 

 

                                                 
1 This research was supported in part by ONR grants N000140210151 and N000140010598. 
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1. Introduction: 

 
The unconstrained quadratic program can be written in the form: 

UQP: xxx Qf =)(min  

where Q is an n by n matrix of constants and x is an n-vector of binary variables.  UQP is 

notable for its ability to represent a significant variety of important problems. The 

applicability of this representation has been reported in settings such as social psychology  

(Harary [30]), spin glasses and circuit board layout (Grotschel, et. al. [23] and Palubeckis 

[43]), financial analysis (Laughunn, [35], McBride and Yormak, [39]), computer aided 

design (Krarup and Pruzan [34]), traffic management (Gallo et al. [17, Witsgall, [50]), 

machine scheduling (Alidaee, Kochenberger, and Ahmadian, [1]), cellular radio channel 

allocation (Chardaire and Sutter [11), molecular conformation (Phillips and Rosen [47]) 

and the prediction of epileptic seizures (Iasemidus, et. al. [31]. Moreover, many 

satisfiability problems (Boros and Hammer [25], Boros and Prekopa [8]) as well as 

combinatorial optimization problems pertaining to graphs such as determining maximum 

cliques, maximum cuts, maximum vertex packing, minimum coverings, maximum 

independent sets, and maximum independent weighted sets are known to be capable of 

being formulated by the UQP problem (see Bourjolly, et. al. [9], Hammer et. al. [25] as 

well as Pardalos and Rodgers [44,45], and Pardalos and Xue  [46]). 

The application potential of UQP is yet substantially greater than this, however, 

due to reformulation methods that enable certain constrained models to be re-cast in the 

form of UQP.  Hammer and Rudeanu [26], Hansen [27], and Hansen et. al. [28] show 

that any quadratic (or linear) objective in bounded integer variables and constrained by 

linear equations can be reformulated as a UQP model. Our purpose in this paper is to 

illustrate how this approach can be effectively employed to model and solve vertex 

coloring problems.  In the section that follows, we present the transformations we use to 

convert constrained problems into the form of xQx, followed by a brief overview of the 

tabu search heuristic we use to solve the resulting UQP model.  In section 3 we apply the 

methodology to the k-colorable problem and present our computational experience with a 
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set of standard test problems. This is followed in section 4 with a demonstration of the 

ability of the UQP formulation to model and solve the optimum cardinality vertex 

coloring problem, which consists of finding a feasible coloring utilizing the minimum 

number of colors. Then in section 5 we offer a summary and some conclusions.   

  

2. Motivation and Transformation to xQx: 
 
 The goal of this paper is not to propose a new algorithm for coloring problems in 

the sense of introducing a highly specialized method in a competition for the fastest 

running time. Rather, our purpose is to propose an alternative framework for solving 

these problems, enabling them to be handled very effectively by a combined modeling 

and solution approach that can also be directly applied to many other classes of problems. 

As we show, our approach is surprisingly effective and robust, even with no special 

tuning or tailoring for coloring problems.  The resulting ability to use general purpose 

algorithms for this important problem domain (as well as others) provides new incentive 

for research into improved algorithms that operate within the larger binary quadratic 

programming framework. 

  We take as our starting point the constrained problem 

xQxx =0min
 

                             subject to 
binaryxbxA ,=  

This model accommodates both quadratic and linear objective functions since the linear 

case results when Q is a diagonal matrix (observing that xj
2 = xj when xj is a 0-1 variable).  

Problems with inequality constraints can also be put into this form by representing their 

bounded slack variables by a binary expansion. These constrained quadratic optimization 

models are converted into equivalent UQP models by adding a quadratic infeasibility 

penalty function to the objective function in place of explicitly imposing the constraints 

bAx = .   

Specifically, for a positive scalar P, we have 

( ) ( )
cxDxxQx

bAxbAxPxQxx t

++=
−−+=0  
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cxQx += ˆ  

where the matrix D and the additive constant c result directly from the matrix 

multiplication indicated.  Dropping the additive constant, the equivalent unconstrained 

version of our constrained problem becomes 

 

binaryxxQxPENUQP ,ˆmin:)(  

 This conversion of a constrained problem to UQP has been known in the literature 

for many years. (see, for instance, Hammer, et. al. [25], Hammer and Rudeanu [26], and 

Hansen [27]). From a theoretical standpoint, a suitable value of the penalty scalar P can 

always be selected so that the optimal solution to UQP(PEN) is the optimal solution to 

the original constrained problem (Hammer and Rudeanu [26]).   

We refer to the preceding general transformation as transformation #1. A very 

important special class of constraints that arise in many applications can be handled by an 

alternative approach, given below, which we call transformation #2. 

In particular, consider problems with considerations that isolate two specific 

alternatives and prohibit both from being chosen.  That is, for a given pair of alternatives, 

one or the other but not both may be chosen. If xj and xk are binary variables denoting 

whether or not alternatives j and k are chosen, the standard constraint that allows one 

choice but precludes both is: 

1≤+ kj xx  

 

Then, for a positive scalar P, adding the penalty function kj xPx  to the objective function 

is a simple alternative to imposing the constraint is a traditional manner. This penalty 

function has sometimes been used by to convert certain optimization problems on graphs 

(e.g., the maximum clique problem) into an equivalent UQP model (Hammer et. al. [25], 

Pardalos and Xue [46]).  Its potential application, however, goes far beyond these settings 

as demonstrated in the present paper and in the earlier survey by Kochenberger, Glover, 

Alidaee and Rego [33]. Note that variable upper bound constraints of the form iij yx ≤  

can be accommodated by transformation # 2 by first replacing the iy  variables by their 

complement.  The opportunity to employ this modeling “trick” in the context of 
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transformation # 2 commonly arises in fixed charge problems and a variety of other 

settings. Note that both transformations 1 and 2 contain a scalar penalty P. Our 

experience with a wide variety of problems, consistent with the experience of others, is 

that frequently P can be chosen much smaller than one would expect.  For example, in 

problems involving a linear objective function and the constraints of transformation #2, P 

can be chosen as small as the largest objective function coefficient (see Boros and 

Hammer [6]).  

 Before illustrating the application of UQP to vertex coloring, we comment on 

solution procedures for UQP. 

 

2.1 Solving UQP: 
 

UQP has been the focus of a considerable research in recent years, including both 

exact and heuristic solution approaches.  Notable recent studies addressing UQP are those 

by Williams [49], Pardalos and Rodgers [45], Boros, Hammer and Sun [7], Chardaire and 

Sutter [11], Billionnet and Sutter [5], Palubeckis [43], Glover, Kochenberger and Alidaee 

[22], Glover, Kochenberger, Alidaee, and Amini, [20], Alkhamis, Hasan and Ahmed [2], 

Beasley [4], Lodi, Allemand and Liebling [37], and Amini, Alidaee and Kochenberger 

[3]. Other promising work is reported by Helmberg and Rendl [29], Katayama, Tani and 

Narihisa [32], Merz and Freisleben [40,41], Merz and Katayma [42] as well as Glover et. 

al. [21].  These various studies approach the problem by branch and bound, 

decomposition, semidefinite programming and cutting planes, tabu search, simulated 

annealing, evolutionary methods such as genetic algorithms and scatter search, as well as 

simple one-pass heuristic methods.  Each of these approaches exhibits some degree of 

success and could in principle be utilized to solve problems reformulated as UQP 

problems.  However, the exact methods degrade rapidly with problem size, and have 

meaningful application to general UQP problems with no more than 100 - 200 variables.  

For larger problems, heuristic methods are required. Several of the heuristic 

methods referenced above are reported to perform well on general UQP models with up 

to a few thousand variables, and the simple one-pass heuristics [7,21] have been usefully 

employed to address problems with more than 13,000 variables. Two methods we have 
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found to be particularly successful for a wide variety of problems are based on tabu 

search [18,20] and on the related evolutionary strategy of scatter search [3,19]. 

Although not pursued by us here, an alternative approach is to solve UQP as a 

continuous non-linear optimization problem within the unit cube. This allows other 

heuristic/approximation methods based on continuous optimization methodologies to be 

applied (see [6], [8], [48]).   In the following section we sketch the basis of our tabu 

search solution approach that was used to produce the computational results presented 

later in the paper. 

2.2 Tabu Search Overview: 

Our TS method for UQP is centered around the use of strategic oscillation, which 

constitutes one of the primary strategies of tabu search.  The variant of strategic 

oscillation we employ may be briefly described in overview as follows. 

The method alternates between constructive phases that progressively set 

variables to 1 (whose steps we call “add moves”) and destructive phases that 

progressively set variables to 0 (whose steps we call “drops moves”).  To control the 

underlying search process, we use a memory structure that is updated at critical events, 

identified by conditions that generate a subclass of locally optimal solutions.  Solutions 

corresponding to critical events are called critical solutions.  

 A parameter span is used to indicate the amplitude of oscillation about a critical 

event.  We begin with span equal to 1 and gradually increase it to some limiting value.  

For each value of span, a series of alternating constructive and destructive phases is 

executed before progressing to the next value.  At the limiting point, span is gradually 

decreased, allowing again for a series of alternating constructive and destructive phases.  

When span reaches a value of 1, a complete span cycle has been completed and the next 

cycle is launched. The search process is typically allowed to run for a pre-set number of 

span cycles. 

 Information stored at critical events is used to influence the search process by 

penalizing potentially attractive add moves (during a constructive phase) and inducing 

drop moves (during a destructive phase) associated with assignments of values to 

variables in recent critical solutions.  Cumulative critical event information is used to 

introduce a subtle long term bias into the search process by means of additional penalties 
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and inducements similar to those discussed above. Other standard elements of tabu search 

such as short and long term memory structures are also included.  A complete description 

of the framework for the method is given in Glover, Kochenberger, Alidaee and Amini 

[20]. 

3. The K-Coloring Problem: 

 Vertex coloring problems seek to assign colors to nodes of a graph subject to the 

requirement that adjacent nodes must be assigned different colors.  The K-coloring 

problem attempts to find such a coloring using exactly K colors. This problem is known 

to be NP-hard. 

 K-coloring problems can be modeled as satisfiability problems as follows:   

              Let ijx  be 1 if node i is assigned color j, and 0 otherwise.   

  Since each node must be colored, we have 

                                      ∑
=

==
K

j
ij nix

1
,...,11                                                      (1) 

where n is the number of nodes in the graph. The requirement that adjacent nodes are 

assigned different colors is handled by imposing the constraints 

                                         Kpxx jpip ,...,11 =≤+                                          (2)        

for all adjacent nodes (i,j) in the graph.  

 This problem can be re-cast into the form of UQP by using transformation # 1 on 

the assignment constraints of (1) and transformation #2 on the adjacency constraints of 

(2).  Note that no new variables are required. Since the model of (1) and (2) has no 

explicit objective function, any positive value for the penalty P will do.  The following 

example gives a concrete illustration of the re-formulation process. 

Example:  (3-coloring) 
 

Consider the following graph and assume we want to find a feasible coloring of 
the nodes using 3 colors. 
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Our satisfiablity problem is that of finding a solution to: 
 

5,...,11321 ==++ iiii xxx                       (3) 
 

3,...,11 =≤+ pjpip xx                                (4) 

                               (for all adjacent nodes i and j) 
 
In this traditional form, the model has 15 variables and 26 constraints.  To recast this 

problem into the form of UQP, we use transformation #1 on the equations of (3) and 

transformation #2 on the inequalities of (4). Arbitrarily choosing the penalty P to be 4, we 

get the equivalent problem: 

xQxPenUQP ˆmin:)(  
 
where the additive constant is 20 and Q̂  is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solving this unconstrained model, xQx ˆ , yields the feasible coloring: 

01,,,,,
5341332211 == xotherall ijxxxxx . 
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3.1 Computational Experience: 
 
 
 To test the potential attractiveness of the UQP modeling and solution approach to 

K-coloring problems, 21 standard test problems from the literature were recast into the 

form of UQP and solved by our tabu search method. Table 1 gives a description of the 

problems and presents the results of our computations. All computations were carried out 

on a 1.7 gigahertz PC. 

                           #                   #                           # xQx           xQx            xQx 
     ID             Vertices         Edges          K          Variables    feasible        Time 
Myciel3 11 20 4 44 Yes < 1 sec 

Myciel4 23 71 5 115 Yes < 1 sec 

Myciel5 47 236 6 282 Yes < 1 sec 

Myciel6 95 755 7 665 Yes < 1 sec 

Myciel7 191 2360 8 1528 Yes < 1 sec 

Anna 138 493 11 1518 Yes 47 sec 

David 87 406 11 957 Yes 1 min, 13sec 

Huck 74 301 11 814 Yes 2 sec 

Jean 80 254 10 800 Yes < 1 sec 

Games120 120 638 9 1080 Yes < 1 sec 

Queen5_5 25 160 5 125 Yes < 1 sec 

Queen6_6 36 290 7 252 Yes < 1 sec 

Queen7_7 49 476 7 343 Yes < 1 sec 

Queen8_12 96 1368 12 1162 Yes < 1 sec 

Queen8_8 64 728 9 576 Yes < 1 sec 

Queen9_9 81 2112 10 810 Yes < 1 sec 

Queen10_10 128 3216 12 1200 Yes 3 sec 

Le450_5a 450 5714 5 2250 Yes 17 min, 7sec 

Le450_5b 450 5734 5 2250 Yes 10 min, 7sec 

Le450_5c 450 9803 5 2250 Yes 1 min, 17 sec 

Le450_5d 450 9757 5 2250 Yes 47 sec 

 Table 1: K-coloring test problems from http://mat.gsia.cmu.edu/COLOR/instances.html.   
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The first four columns of Table 1 indicate the problem identifier along with the 

size of the graphs and the number of colors (K) to be used.  The last three columns give 

the number of variables involved, whether or not a feasible coloring was found utilizing 

K colors, and the time our tabu search method took to find a solution.  Note that feasible 

colorings (solutions) were quickly found in all 21 cases. In fact, the solutions shown are, 

with the exception of the problem Queen10_10 for which an optimal solution (minimum 

number of colors) has not been reported in the literature, known to be optimal. 

Recall from the discussion of transformation # 1 that the transformation process 

produces and additive constant, c, in addition to the quadratic function, xQx. Since an 

optimal solution would have a net objective function value of zero for the problems 

considered here, our solution procedure was run for a pre-determined number of span 

cycles (1000) or until xQx was equal to –c, whichever occurred first for each problem.  In 

all cases, as indicated in the table, we were able to find solutions with xQx = –c before 

hitting the span termination limit.  If, for some problem, we were to terminate with a 

result other than –c, it would most likely mean that the problem is infeasible. Given the 

heuristic nature of our solution procedure, however, this conclusion cannot be taken with 

certainty. In this respect, our method offers no shortcuts in establishing irrefutably that 

infeasibility exists.   

Significantly, from a computational standpoint, the size of our model (as 

embodied in the Q matrix) for the K-coloring problem is determined by the number of 

vertices and K—not by the number of edges in the graph. This suggests that the approach 

may well be attractive for both sparse and dense graphs. 

 

4. General Vertex Coloring: 

 The previous section illustrated how xQx could be utilized to model and solve K-

coloring problems.  This approach can be used to find the minimum number of colors 

required for a feasible coloring by examining a sequence of K-coloring problems where 

K starts at some large value and is decreased by 1 in each subsequent problem until it is 

no longer possible to find a feasible coloring.   
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 An alternative to the foregoing sequential approach is to pose the problem at the 

outset as a more general version of the vertex coloring problem that seeks to 

simultaneously determine both the minimum number of colors needed and a 

corresponding feasible coloring. In this section we illustrate how this problem can also be 

modeled and solved using the UQP framework. 

Let K_max be the maximum number of colors to be considered and n be the 
number of vertices in the graph.  As before, let ijx  be 1 if node i is assigned color j, and 0 

otherwise. In addition, let jy   be 1 if color j is used in a feasible coloring, 0 otherwise. 
Then the formulation is 

 

                                                     

st

K

j
jy∑

=

max_

1
min

                                                   (5) 

 

                                           ∑
=

==
max_

1
,...,11

K

j
ij nix                                   (6) 

                                             ( ) pcolorandjiedgeeachforjpip xx ,1≤+           (7) 

                                                  pcolorandivertexeachforpip yx ≤                 (8) 
 

binaryyx,  
 
This model can be re-cast into an equivalent UQP form as follows.  The first two sets of 

constraints, as in the development of the previous section, can be accommodated by 

transformation #1 and  transformation # 2 respectively. The variable upper bound 

constraints of (8) can be accommodated by transformation # 2 by first replacing each “y” 

variable by its complement.   The completed transformation process yields an equivalent 

model of the desired form  

xQx ˆmin  

As in the case considered in section 3, this equivalent unconstrained problem is obtained 

without the introduction of additional variables. 
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4.1 Computational Experience: 
 
 To illustrate the application of UQP to this more general form of the coloring 

problem, 8 of the smaller problems considered in section 3 were first reformulated as 

problems of the form of (5) – (8) above and then re-cast in the form of UQP. Table 2 

presents the results of the computations.  

    
ID 

# 
nodes 

# 
edges 

 
K_max 

# xQx 
variabl

es 

xQx 
solution 

Opt 
Solution 

Jean 80 254 12 972 10 10 
David 87 406 12 1056 11 11 
Huck 74 301 14 1050 11 11 

Mycie13 11 20 8 96 4 4 
Mycie14 23 71 10 240 5 5 
Mycie15 47 236 10 480 6 6 
Mycie16 95 755 10 960 7 7 

Queen5_5 25 160 10 260 5 5 
 
            Table 2: Results corresponding to the general coloring formulation 
 

Table 2 identifies the problems solved along with the maximum number of colors 

allowed, the size of the resulting UQP model, and the results obtained.   For example, for 

problem “Jean”, a maximum of 12 colors were allowed yielding a UQP model with 972 

variables.  Solving the UQP version of Jean gave a solution with 10 colors which is 

known to be optimal. As shown in Table 2, the UQP equivalent formulation led to 

optimal solutions for each of the 8 problems.  The UQP equivalent models for the general 

formulation considered here, (5) – (8), are larger than the corresponding dimensions 

displayed in Table 1 due to the extra colors that are considered by the general model. 

This observation motivates an interest in developing effective heuristics for generating 

appropriate (small) values for K_max, enabling larger instances to be solved in 

reasonable computational time. Such efforts are part of our on-going research.   

In making the transformation to xQx, a penalty value of P = 20 was used in each 

case.  All problems were solved by our tabu search procedure with each problem allowed 

to run for a total of 300 Span cycles. The largest of the problems took less than 3 minutes 

to complete the 300 cycles.    
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5. Summary and Conclusion: 
 In this paper we demonstrated how the vertex coloring problem, in both its 

K_coloring and general form, can be effectively modeled and solved as an unconstrained 

quadratic program.  Computational results with our tabu search heuristic indicate that this 

approach is not only effective but very competitive with special purpose methods 

designed for these problems. Table 1 in particular showcases how robust our approach is 

in terms of finding best known solutions over a diverse set of problems.  Comparisons in 

the literature of competing methods (see for instance Di Blas, et al [14] and Mehrotra and 

Trick [38]) indicate that no single method dominates all others in terms of solution 

quality and computational time for the problems considered here.  Many of the problems 

examined in Table 1 are part of the DIMACS Challenge problem set and are known to be 

difficult.  Some of the best known and well established methods for graph coloring (such 

as DSATUR and LPCOLOR [38]) are challenged by certain instances considered here 

(e.g., the “queen” problems and the “myciel” problems) and were unable to find best 

known solutions in all cases.  By contrast, our  general modeling and solution approach  

proved able to find best known solutions in all cases and to do so in reasonable 

computational times.  Comparisons with other methods reported in the literature also 

indicate that our approach compares favorably on those problems that have more 

commonly been tackled by other methods (see for instance Coudert [13] and 

Lewandowski and Condon [36]). 

 Some very recent additions to the literature contain papers describing new 

procedures for vertex coloring problems that hold considerable promise in terms of 

solving much larger instances than those considered here. These methods, specially 

crafted for coloring problems, have raised the bar in terms of what is possible and what 

other researchers will come to use as benchmarks.  The works by Dorne and Hao [15], 

Galinier and Hao [16], and Chiarandini and Stutzle [12] are particularly promising in this 

regard. The model we present here for coloring problems could be employed as an 

alternative representation of such problems.  Whether or not adopting such a perspective 

proves to be competitive from a computational point of view depends on the continued 

improvement in solution methodologies for the UQP model that would be required to 
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efficiently solve UQP instances with upwards of 20,000 variables or more. We are 

currently working on such a solution capability and will report on its comparative 

performance with the latest coloring methods in future papers.    

 The reformulation approach described in this paper can in principle be applied to 

any linearly constrained quadratic and linear programs in bounded integer variables. Our 

experience with other classes of problems, similar to our experience reported here, is that 

the approach works very well and provides a unifying modeling and solution framework 

for general combinatorial problems. As research continues to lead to algorithmic 

improvements for solving UQP, this approach will increasingly become an attractive 

alternative to conventional modeling and solution procedures. 
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